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Abstract
A new three-dimensional neutron diffusion code named
TRIVAC was set up using advanced discretization algorithms
and improved iteration strategies. The two variable order
discretization algorithms used in TRIVAC will be presented.
These are based, respectively, on the variational and nodal
collocation techniques. These algorithms will be shown to
produce reconstructible solutions which are upper and lower
limits of the exact solution. The eigenvalue matrix system is
solved using an ADI preconditioning of the power method in
conjunction with a symmetric variational acceleration tech
nique. Validation results are reported for the IAEA two- and
three-dimensional benchmarks, and for a two-dimensional
PWR.

Resume
Un nouveau logiciel tridimensionnel de diffusion neutronique
a ete con<;:u en utilisant des algorithmes de discretisation
modernes et des strategies iteratives ameliorees. Nous allons
presenter les deux algorithmes de discretisation d'ordre vari
able utilisees par TRIVAC. Celles-ei sont basees respectivement
sur les techniques de collocation variationnelle et nodale. Nous
allons montrer que ces algorithmes produisent des solutions
interpolables et qui correspondent ades limites superieure et
inferieure de la solution exacte. Le systeme matriciel aux
valeurs propres est resolu a raide d'un preconditionnement
ADI de la methode des puissances, en conjonction avec
une technique d'acceleration variationnelle symetrique. Des
resultats de validation sont rapportes pour les cas tests IAEA a
deux et trois dimensions ainsi que pour une representation
bidimensionnelle d'un PWR.

Introduction
The primary goal of a discretization algorithm is to
transform the differential operators of the diffusion

equation into real number matrices adapted to an
efficient numerical solution. A review of most common
algorithms is presented in reference 1. This list should be
updated by appending the variational and nodal dis
cretization techniques presented in this paper [2, 3].

There is no such thing as an 'ideal' discretization
algorithm and any choice is the result of a compromise.
Some techniques, such as the analytical nodal method
(ANM), are very efficient to compute a power map
d~fin~dover coarse elements, but they lack a straight
forward reconstruction technique for the solution [4].
Other algorithms, like the classical finite element
approximations, are handicapped by difficulties such
as their incompatibility with an AD! preconditioning.

The variational and nodal collocation techniques
used in TRIVAC appear to include most desirable proper
ties in spite of the fact that they cannot compete with
the efficiency of nodal schemes based on the quadratic
leakage approximation. Let us mention the four most
interesting properties of the collocation techniques:

1. The numerical solution is reconstructible over each ele
ment of the domain. The polynomial nature of the
solution greatly simplifies the integration of TRIVAC in
applications using the generalized perturbation theory or
the quasistatic algorithm of space-time kinetics.

2. The discretization order is variable, being a function of
the degree of the polynomials used to represent the
neutron flux over each element. High order polynomials
(cubic or quartic) are u!':ed to model PWR while linear
polynomials are used for CANDU reactors. In fact, the
linear variational and nodal collocation techniques are
respectively equivalent to mesh-comer and mesh-centered
finite difference approximations.

3. Collocation techniques are compatible with an ADI pre
conditioning of the power method [5].

4. Matrices produced as a result of the discretization are real
and independent of the eigenvalue. Matrices correspond
ing to the leakage terms are symmetric, positive definite,
and diagonally dominant. Other matrices are diagonal.

The two types of collocation techniques available in
TRIVAC will now be presented.
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Over each element we will assume a tensorial expan
sion of solution <!>(x, y, z) and of source term S(x, y, z)
with the help of low order polynomials, which are
denoted {Pk(u); k = 0, K}. In cases where point (x, y, z)
belongs to element Ve, these two expansions take the
form

with

Figure 1: Discretization of a Cartesian domain.

element e, we will transform Cartesian coordinates
(x, y, z) of the element into local coordinates (u, v, w)
corresponding to a unitary cube uf reference. The
Cartesian coordinates are described in Figure 1.

The following variable transformations will be used:

1
u = - [x - !(xm -! + xm +!)]

~xea ~ a ~ a ~
- -Dx(x,y,z)- - -Dy(x,y,z)- - -Dz(x,y,z)-
~ ~ ~ ~ ~ ~

+ lr(x, y, z) <!>(x, y, z) = S(x, y, z), (1)

with <!>(x, y, z) continuous everywhere in the domain.
Currents -Oix, y, z) a<!>/ax, -Oy(x, y, z) a<!>/ayand
-Oz(x, y, z) a<!>/az are almost continuous, but may
present localized discontinuities over lines of singu
larity [1]. The boundary conditions are either zero flux
(<!>(x, y, z) = 0) or positive albedo:

a<!> 1 1 - ~(x, y, z)
Dx(x, y, z) ax ± 2: 1 + (3(x, v, z) <!>(x, y, z) = 0; (2a)

a<!> 1 1 - ~(x, y, z)
Dy(x, y, z) ay ± 2: 1 + ~(x, y, z) <!>(x, y, z) = 0; (2b)

o<\J 1 1 - l3(x, y, z)
Dz(x, y, z) az ± 2: 1 + ~(x, y, z) <!>(x, y, z) = 0; (2c)

where the "-" or "+" sign is used, depending on
whether the boundary is to the left of or to the right of
the domain in relation to the direction of each axis.

We will now assume that the nuclear properties
are uniform over each parallelepiped composing the
domain. These parallelepipeds will then be used to
support one or more elements. We will designate the
value of each nuclear property over element e by 0xe,
0ye, 0ze, and Ire· . . .

Before introducing the trial functions defmed over

Definition of the Polynomial Basis
Both variational and nodal collocation techniques rely
on a polynomial representation of trial functions. A
weighted residual approach is used to find the approxi
mate solution of the diffusion equation over the reactor
domain. There is an important distinction in the way
the weighted residual formalism is applied to each type
of collocation technique, and this distinction affects
the choice of the polynomial basis. The variational
collocation technique is based on a finite element
formalism where the residue, defined over the entire
domain, is orthogonal to the entire set of trial func
tions. In addition, the interface conditions are treated
as natural conditions. With the nodal collocation
technique, however, the residues are cancelled ele
ment by element and the interface conditions are taken
into account aposteriori. Consequently, the variational
collocation technique is constrained to use a poly
nomial basis with continuous trial functions over the
element boundaries. More flexibility is left to the nodal
collocation basis, which permits piecewise continuous
polynomials to be used.

We will now present the collocation techniques in the
case of a one-speed formalism. Changing over to the
multigroup formalism presents no additional difficulty.
Moreover, we will limit this study to Lhree dimensional
Cartesian domains composed of an assembly of homo
geneous parallelepipeds. Under these conditions, the
neutron diffusion equation is written
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2. Quadratic Lagrangian polynomials (K = 2)

The collocation points are now chosen at abscissa Uo =

-1 / 2, Ul = 0 and U2 = 1 / 2. The corresponding trial
polynomials are

(ge)

(9a)

(8d)

(9b)

(9d)

4. Quartic Lagrangian polynomials (K = 4)
The collocation points are now chosen at abscissa Uo =
-1/2, Ul = -v'3728, U2 = 0, U3 = v'3T28and U4 = 1/2.
The corresponding trial polynomials are

P4(u) = 14u4 + 7u3
- ¥u2

- ~u. (ge)

Once the polynomial basis has been defined, the
variational collocation method proceeds as any finite
element formalism. However, all the linear or bilinear
products involving the trial functions should be carried
out using a Lobatto's quadrature formula in order to
diagonalize the mass matrix.

and

{
2 4 1 3 1 2 1}P3(u)=49 --u --u +-u +--u ,
3 V2l 6 4V21

and

The Nodal Collocation Method
We have developed a second family of collocation tech
niques using a nodal formalism. These techniques
assume an expansion in Legendre polynomials of the
neutron flux over each element, without imposing a Co
continuity on the interfaces. The absence of a Co
continuity precludes the use of a variational formula
tion based on the classical functional of the finite
element method [1]. We will show that a nodal for
malism makes it possible to bypass this restriction,
while satisfying the four conditions previously stated
and without having to resort to a numerical integration
of the kind used in the variational collocation method.

The nodal collocation method has two features
which distinguish it from other polynomial nodal
approaches [6]. First, the nodal collocation method
does not require the quadratic transverse leakage ap
proximation to generalize in two or three dimensions.
Instead, it uses a tensorial expansion of Legendre
polynomials, which introduces no further approxima
tion to the one-dimensional case. Second, we will
show that the linear nodal collocation method is identi
cal to the mesh centered finite difference method. Until
now, only the analytical nodal method (ANM) ap
peared to be linked to this type of finite difference [4].

The Legendre polynomials used in the nodal collo
cation method differ somewhat from their classical
definition because of the following two constraints:

1. Polynomials Pk(u) must be defined over the interval
(-1 / 2, 1 / 2) to ensure that the reference cube has a
unitary volume.(8e)

(8a)

(8b)

(6a)

(7a)

(7b)

(6b)

(7e)

Po(u) = -u + i
and

P1(u) = u + i.

Po(u) = 2u2
- u,

P1(u) = -4u2 + 1,

and

P2(u) = 2u2 + U.

3. Cubic Lagrangian polynomials (K = 3)
The collocation points are now chosen at abscissa Uo =
-1/2, Ul = -1/ (2Y5), U2 = 1/ (2Y5) and U3 = 1/2. Note
that the position of points Ul and U2 is imposed by the
requirement that the set (Uk; k = 0, K) correspond to the
base points of a Lobatto's quadrature formula. The corre
sponding trial polynomials are

The Variational Collocation Method
The classical formalism of the finite element method
involves the analytical integration of the terms com
posing the mass and stiffness matrices. The integra
tions are trivial insofar as the trial functions are simple
polynomials. The mass matrix thus obtained is non
diagonal, which makes the classical approximations
incompatible with the AD! preconditioning.

The variational collocation method corresponds to
the approximations of the finite element method when
the mass and stiffness matrices are numerically inte
grated in order to diagonalize the mass matrix [2]. This
is made possible by expanding the solution in terms of
Lagrangian polynomials, whose collocation points are
identical to the base points of a Lobatto's quadrature
formula. This type of quadrature makes possible the
exact integration of the stiffness matrix, which is a
necessary condition to ensure the convergence of the
variational collocation method. Finally, we note that
the linear variational collocation method is identical to
the mesh corner finite difference method.

We have already tested the variational collocation
method based on linear, quadratic, cubic, and quartic
polynomials defined over two- and three-dimensional
domains [5]. These approximations use the following
trial polynomials:

1. Linear Lagrangian polynomials (K = 1)
In this case, the collocation points are chosen at abcissa
Uo = -1 / 2 and Ul = 1 / 2 in local coordinates. The trial
polynomials are therefore given as:

327



where Ski is the Kronecker delta function.

We will therefore use the following Legendre poly
nomials:

approach offers some similarities with a conjugate
gradient technique applied to the eigenvalue problem.

The preconditioning matrix used in TRIVAC is equi
valent to an AD! splitting of the matrices Agg. This
approach will be effective only insofar as the matrices
Agg may be split according to the equation

Agg = Vgg + Xgg + PyYggpJ + PzZggPf, (14)

where Ugg = matrix containing the diagonal elements
of Agg; Xgg, Ygg' Zgg = symmetrical matrices containing
the non-diagonal elements of Agg corresponding to x,
y, and z couplings, respectively; Py, Pz = permutation
matrices which ensure a minimum band width for
matrices Ygg and Zgg.

This type of splitting capitalizes on the possibility of
numbering the unknowns in such a way that matrices
Xggt Yggt and Zgg appear with a diagonal banded
structure. An important characteristic of the variational
and nodal collocation methods allows a maximum band
width, respectively equal to K + 1 and 2K for a given
order of discretization.

(10)

(lIe)

(lIa)

(lIb)

(lId)

J2k+3Zk+1
Pk+1(U)=2 ----uPk(u)

Zk+1 k+1

2. Polynomials Pk(U) must be mutually orthonormal over the
reference interval; that is,

Ii du Pk(u) P,(u) == llkl
-i

Po(u) == 1,

Pl(U) == ZY3u,

v5 2
P2(U)==T(lZu -1),

and, in general:

Matrix Storage Schemes and Resolution Techniques
With a two-group energy formalism, the variational or
nodal cullocatiun method is applied group by group to
generate the following matrix system:

ifk~1.

A weighted residual approach is then applied to
these trial functions in order to transform equation (1)
into a constant matrix system. The algebra involved
with the nodal collocation method is tedious and will
be omitted here. A complete description of the method
can be found in reference 3.

and

S2 = A21~1' (13b)

Groupwise values of the neutron flux are therefore
represented by the polynomial coefficients associated
to all the elements. The solution of the overall eigen
value problem can be found using the preconditioning
power method as presented in the reference 5. TRIVAC

also offers the possibility to solve a fixed-source
eigenvalue problem, which is useful in applications
involving the generalized perturbation theory [7, 8, 9]
and the improved quasistatic approach in space-time
kinetics.

Convergence of the preconditioned power method
is very slow in cases where the solution corresponds to
a flattened neutron flux. This difficulty was resolved in
TRIVAC using the symmetric variational acceleration
technique (SVAT), as pointed out in reference 10. This

Numerical Results
The variational and nodal collocation methods were
programmed and included in the TRIVAC computer
code. The two kinds of discretization share the same
computer environment and use the same numerical
analysis techniques for the solution of matrix systems.

The TRIVAC computer code is written in FORTRAN-77

and compiled by FORTRAN-VS (IBM) at level two optimi
zation. All vectors and matrices are declared in single
precision (1 word = 32 bits) and are dynamically
allocated by a subroutine written in assembler. Certain
accumulators assigned to bilinear product calculations
are declared in double-precision, in order to minimize
round-off error. Numerical tests were carried outon an
IBM-4381 (group two) computer and are therefore
typical of a scalar computer.

It is useful to mention the main numerical techniques
and the calculation options used in this study:

1. The neutron diffusion equation (1) is discretized using
the variational or nodal collocation method. The order K
of discretization is equal to three (cubic polynomials) or
four (quartic polynomials). In all cases, the reactor radial
plane is partitioned using one and only one element per
assembly.

2. The fundamental solution of the eigenvalue system (12)
and (13) is obtained by the preconditioned power method,
with a two-parameter variational acceleration [5, 10].

3. A preconditioning is applied by carrying out one or two
AD! iterations per outer iteration of the power method [5].

4. The power method is initialized by a uniform estimate of
the solution (!>i = 1.0). The iterations are interrupted
when the following convergence criterion is satisfied:

max I <t>ik - 1) - <l>j(k) I
I :s 10-4, (15)

max I <Pi(k) I
i

(lZ)

(13a)

-+ -+
Agg<\>g = Sg

with
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Table 1: IAEA-20 Benchmark Calculations

Polynomial Emax E CPU time Outer Inner I
order Bandwidth Kiot Kb (%) (%) (5) iterations outereft

Variational collocation 3< 4 568 1.029786 5.8 2.2 4.8 51 1
3 4 568 1.029785 5.8 2.2 6.4 39 2

4 5 1033 1.029596 0.93 0.34 15.9 87 1
4 5 1033 1.029592 0.93 0.34 14.3 45 2

Nodal collocation 3d 6 621 1.029370 4.9 1.8 4.8 39 1
3 6 621 1.029374 5.0 1.8 7.1 33 2

4 8 1104 1.029590 0.78 0.26 15.1 63 1
4 8 1104 1.029582 0.77 0.26 16.7 39 2

"The number of unknowns per energy group.
~he reference solution was obtained by a nodal analytic calculation with a mesh of 34 x 34. The corresponding effective multiplication factor is
K"ff = 1.029585.
<See Figure 2 for an illustration of thermal flux distribution.
dSee Figure 3 for an illustration of thermal flux distribution.

Table 2: Tihange Test Problem Calculations

Polynomial Emax E CPU time Outer Inner I
order Bandwidth Ktot K~ff (%) (%) (5) iterations outer

Variational collocation 3 4 1888 1.000312 4.2 1.9 18.8 45 1
3 4 1888 1.000312 4.3 1.9 24.7 33 2

4 5 3401 1.000707 1.1 0.45 55.6 69 1
4 5 3401 1.000704 1.1 0.46 57.9 39 2

Nodal collocation 3 6 1989 1.001300 4.1 1.7 35.4 63 1
3 6 1989 1.001303 4.1 1.7 52.2 51 2

4 8 3536 1.000971 1.1 0.43 128.1 111 1
4 8 3536 1.000961 1.1 0.43 162.9 75 2

"The reference solution was obtained by a nodal analytic calculation with a mesh of 51 x 51. The corresponding effective multiplication factor is
Keu = 1.000823.

Table 3: IAEA-30" Benchmark Calculations

Variational collocation

Nodal collocation

Polynomial Emax E CPU time Outer Inner I
order Bandwidth Ktot Kb (%) (%) (5) iterations outereft

3 4 9088 1.029313 6.8 2.3 240.8 87 1
3 4 9088 1.029315 6.8 2.3 258.2 51 2

4 5 21693 1.029117 1.2 0.36 1012.0 141 1
4 5 21693 1.029113 1.2 0.36 1128.0 87 2

3 6 9315 1.028810 5.3 2.0 223.9 75 1
3 6 9315 1.028812 5.2 2.0 247.3 45 2

4 8 22080 1.029045 0.97 0.34 815.5 99 1
4 8 22080 1.029037 0.97 0.34 1144.0 75 2

"All TRIVAC calculations are based on a mesh of 9 x 9 x 5 with axial mesh lines at 0.,20., 150., 280., 360. and 380. em.
~he reference solution was obtained by a nodal analytic calculation with a mesh 26 x 26 x 18. The corresponding effective multiplication factor
is Keff = 1.029060.

where <j>i(k) is the i-th flux component after k iterations.

This criterion makes possible a convergence precision

better than 0.05% over the zonal powers.

5. The solutions thus obtained are compared to the reference

calculations carried out with the analytic nodal method
[4]. The maximum and average errors over zonal powers

lOmax and Eare calculated as in reference 1.

Tables 1 to 3 give the numerical results for three
specific cases: the two-dimensional (20) and three
dimensional (3D) IAEA benchmarks [11] and the two
dimensional Tihange test problem, which represents a
complete configuration of a pressurized water reactor
(PWR) at the beginning of the second cycle [12].

The overall numerical results reveal two interesting
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Table 4: Bounding Effect of Zonal Powers·

"IAEA-2D benchmark calculations discretized
by a quartic collocation method.

features, which are clearly seen in Table 4 for a specific
case:

1. For a given order of discretization, the variational and
nodal collocation methods offer similar accuracy.

2. The reference solution, obtained through the analytic
nodal method, is bounded by the variational and nodal
collocation solutions, respectively. This bounding effect
is observed for the eigenvalue and for most zonal powers.

It is worth mentioning that the band width of
matrices Xgg- Ygg' and Zgg is equal to K + 1 with the
variational collocation method, while it is equal to 2K
with the nodal collocation method. This feature tends
to penalize the nodal collocation method in terms of
calculation efficiency and memory utilization.

It is not possible to conclude that one discretization
method is numerically more stable than the other. The
variational collocation method is more stable for solving
the Tihange test problem while the nodal collocation
method seems to be preferable for the IAEA benchmarks.

Figures 2 and 3 illustrate the thermal flux distribu
tions obtained for the IAEA-2D benchmark when a
third order discretization is used. The distribution
corresponding to the variational collocation method

Figure 2: Distribution of thermal flux for a discretization of the
lAEA-2D b~ndlIIlark by the variational collocation method.

Figure 3: Distribution of thermal flux for a discr~tization of the
IAEA-2D benchmark by the nodal collocation method.

is formed from the assembly of bicubic polynomials
and does not have any discontinuities at element
boundaries. On the other hand, the distribution
corresponding to the nodal collocation method consists
of the assembly of piecewise continuous biparabolic
polynomials. The discontinuities, located on element
boundaries, are responsible for the incompatibility of a
Legendre representation with the variational formalism
presented in reference 1. While reconstructing the
neutron flux obtained by the nodal collocation method,
we have lost one order of representation on the trial
functions. However, this causes no practical handicap
during the later stages of calculation requiring such a
reconstruction.

Nodal
collocation
(%)

0.12
o.~o

0.25
0.34

-0.05
0.16

-0.09
-0.42

0.25
0.23
0.23
0.21
0.05
0.14

-0.46
0.22
0.19
0.14

-0.01
-0.17
-0.77

0.18
0.21

-0.07
-0.48
-U.32
-0.04
-0.77
-0.77

-0.09
-0.51
-0.36
-0.42

0.14
-0.14

0.18
0.56

-0.39
-0.34
-0.30
-0.30
-0.02

0.21
0.57

-0.29
-0.24
-0.13

0.05
0.23
0.93

-0.21
-0.19

0.11
0.61
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0.91

Variational
collocation
(%)e

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
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Conclusions
We have described a new family of numerical tech
niques for discretizing the neutron diffusion equation.
These collocation methods makes it possible to increase
the order of discretization by varying the degree of
polynomials used as trial functions. The minimum
order, corresponding to a linear representation, is
equivalent to the mesh-corner or mesh-centered finite
difference method.

The variational and nodal collocation meLhods ap
pear to be linked, in so far as they provide lower and
upper limits for the exact solution of the diffusion
equation. This property has not been proven analy
tically, but it has nevertheless been observed in the
majority of numerical tests carried out so far.

The variational and nodal collocation methods also
share a certain number of interesting properties for
numerical applications: they are compatible with an
AD! preconditioning and permit reconstruction of flux
after convergence. They therefore share the main
advantages of the finite element method, without
being committed by its main drawback.

The main criticism that could be made of collocution
methods is their reliance on tensorial expansions of
trial polynomials. This means that when going from one
to three dimensions, for a given order of discretization,
the number of unknowns associated with each element is
cubed. This approach, while mathematically coherent,
requires more computer resources than methods based
on the quadratic transverse leakage approximation [4].

Work is now underway to use this new diffusion
module in fuel management and design applications,
such as:

1. OPTEX-4 for the 3-D optimization of fuel enrichment,
burnup, and adjuster grading in a CANDU reactor, using
generalized perturbation theory [8, 9];

2. XSTATIC for the solution of the space-time kinetics equa
tions using the generalized quasistatic algorithm;

3. a new diffusion module for the FMDP family of codes [13].
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